
Incremental Consistency Checking for Complex Design

Rules and Larger Model Changes

Alexander Reder and Alexander Egyed

Johannes Kepler University, Linz, Austria
alexander.{reder,egyed}@jku.at

Abstract. Advances in consistency checking in model-based software develop-
ment made it possible to detect errors in real-time. However, existing approaches
assume that changes come in small quantities and design rules are generally small
in scope. Yet activities such as model transformation, re-factoring, model merg-
ing, or repairs may cause larger model changes and hence cause performance
problems during consistency checking. The goal of this work is to increase the
performance of re-validating design rules. This work proposes an automated and
tool supported approach that re-validates the affected parts of a design rule only.
It was empirical evaluated on 19 design rules and 30 small to large design models
and the evaluation shows that the approach improves the computational cost of
consistency checking with the gains increasing with the size and complexity of
design rules.

Keywords: consistency checking, performance, incremental checking

1 Introduction

Errors in design models range from basic well-formedness problems (e. g., syntactic vi-
olations) to more advanced, multi-view inconsistencies. While designers may be willing
to tolerate these errors [10,1], the designer should nonetheless be aware of their exis-
tence. Fortunately, recent progress on consistency management has demonstrated that
modeling tools can be made to detect errors in design models in real time while retaining
the free customizability of design rules. Existing approaches, such as the Model/Ana-
lyzer [6], re-validate design rules only if they are affected by model changes. Empirical
evaluations have shown that such approaches are very fast: they can validate the impact
of a design change in milliseconds in average with the performance being unaffected
by the model size.

However, the performance of state-of-the-art incremental consistency checkers de-
creases with 1) the quantity of model changes, 2) the complexity of design rules, and
3) the number of design rules. For example, existing approaches assume that models
change in small increments only (e. g., a class is renamed, a new message is added to
a sequence diagram). Most model changes are indeed small. Unfortunately, there are a
range of quite common modeling activities that cause larger model changes. Examples
are model transformations [13], re-factoring [19], model branching or merging (as in
subversion) [18], and model repairs [7,9,15]. These activities may be arbitrary complex



and pose a challenge to incremental consistency checking because the increment be-
comes too large to handle it instantaneously. This problem is aggravated with the com-
plexity of design rules. The more complex a design rule the more likely it is affected by
a model change. And the problem is even further aggravated with an increasing number
of design rules. The more design rules there are, the more likely are model changes to
affect multiple design rules. Combined, they strongly impact the performance of incre-
mental consistency checking.

This paper proposes a novel approach for improving the performance of incremental
consistency checking. The basic idea is to not validate design rules in their entirety but
to focus on the parts that are affected by model changes. Whether a part of a design rule
is affected by a change is determined fully automatically based on observations of the
design rule’s validation which is stored as a validation tree. The approach does require
an additional memory overhead for storing the validation tree. Complete validation trees
can be voluminous but a second novel contribution is in the reduction of the validation
tree to those parts of a design rule validation whose change can impact the validation
result as a whole. For example, if a = true and b = false in the conjunction a∧ b then
a change to a cannot affect the result of the conjunction and can be cut from the tree.

We evaluated our approach on 19 design rules, 30 industrial design models (ap-
proximately 130,000 elements), and roughly 1,500 random model changes. We will
demonstrate through empirical evaluations that our approach achieves up to 20-fold
performance for 19 designs rules we analyzed – the more complex the design rule, the
larger the performance gains. While the scalability of the proposed approach is still lin-
early dependent on the quantity of model changes and the number of design rules, the
performance gain implies that much larger model changes or quantities of design rules
can be handled instantaneously than was possible to date. The memory cost is in aver-
age only 2-fold more expensive compared to state-of-the-art and increases linear with
the size of the model. Our approach is fully automated, tool supported, and integrated
with the modeling tool IBM Rational Software Architect. The implementation supports
OCL as the constraint language and UML as the modeling language, but the approach
is designed to be applicable to arbitrary modeling languages and their corresponding
constraint languages.

The remainder of this paper is structured as follows. Section 2 defines the basic
terms and a running example that are used in this paper. In Section 3 the main princi-
ples of our approach are shown. Section 4 shows the evaluation of our approach and
Section 5 explains the threats of validity of the evaluations. An overview of the existing
work on this topic is given in Section 6 and, finally, Section 7 concludes the work and
gives an outlook about future work planned.

2 Definitions and Example

2.1 Basic Definitions

Definition 1. A model represents the main aspects of a software project that must be

implemented. It consists of model elements that contain properties, e. g., a name or

a reference to other model elements. A design rule defines requirements that must be



fulfilled in the model. A violation of a design rule causes an inconsistency in the model.

The requirement of the design rule is expressed as a condition that validates to true

(consistent) or false (inconsistent). A design rule is written for a specific context that

can be a single model element (the design rule will be validated once) or a type of model

element (the design will be validated for each instance of this model element type in the

model). Each validation can cause a separate inconsistency.

Design Rule := 〈context, condition〉

condition : context → {true, false}

Definition 2. A design rule condition consist of a set of hierarchical ordered expres-

sions where each expression consists of an operation (o), a set of 0 to * arguments (α)

and a validation result (σ). The arguments of an expression (ǫ) are expressions itself

and they are tree based ordered, i. e, each expression has exactly one parent and is in a

set of arguments of an other expression except the root expression (ǫ0).

condition :=
n
⋃

i=0

ǫi|

{

∃i, j : ǫj ∈ ǫi.α if j > 0, i 6= j

∄i, j : ǫj ∈ ǫi.α if j=0, i6=j

ǫ := 〈o, α, σ〉

2.2 Running Example

Figure 1 introduces a small illustration to accompany the discussion in the paper. The
example depicts an UML model containing two diagrams, a class and sequence dia-
gram. The given model represents an early design-time snapshot of a video-on-demand
(VOD) system. The class diagram (left) represents the structure of the VOD system:
a ‘User‘ that controls the system and watches videos, a ‘Display‘ used for visualizing
movies and receiving user input and a ‘Streamer‘ for downloading and decoding movie
streams. The sequence diagram (right) describes the process of selecting a movie and
playing it. Since a sequence diagram contains interactions among instances of classes
(objects), the illustration depicts a particular user invoking ‘select‘ (a message) on the
‘d‘ lifeline of type ‘Display‘ which then invokes ‘connect‘ on the ‘s‘ lifeline of type
‘Streamer‘. The movie starts playing once the ‘play‘ message is issued which is fol-
lowed by ‘stream‘ and successive ‘draw‘ messages.

Messagem :
(∃l1 ∈ m.receiveEvent.covered,
l2 ∈ m.sendEvent.covered :

∃a ∈ l2.represents.type.ownedAttribute :
a 6= null ⇒ a.type = l1.represents.type)











(1.1)

∧
(∀l ∈ m.receiveEvent.covered :
∃o ∈ l.represents.type.ownedOperation :
o.name = m.name)







(1.2)

(1)

Design Rule (1) discusses two conditions the model must satisfy: 1) whether a given
message in a sequence diagram matches the direction of the class association (1.1), and
2) whether the given message has a same-named operation (1.2). The two conditions are



User

Display

select
stop
play
draw

Streamer

stream
connect

*

0..1

u:User d:Display s:Streamer

1:select

1.1:connect

1.2:play

1.3:stream

2:draw

Fig. 1. UML Class and Sequence Diagram of a Video on Demand System

expressed in one design rule and linked together by a conjunction (∧). This linking into
more complex design rules is common, for example, to avoid unnecessary validations.
As such, the search for a matching operation name (1.2) is useful only if the operation’s
class is identified correctly by the association (1.1).

Typically, rules are written from the perspective of a context – a type of model
element. The context for Design Rule (1) is the UML type ‘Message‘ (see Messagem

at the very top) and the rule has to be validated separately for each message in the
sequence diagram in Figure 1. There are thus five validations of that rule necessary in
the illustration. Each evaluation validates the correctness of its message only.

If, for example, the design rule validates the message ‘connect‘ then, first, both ends
of the message are accessed through the receive event (l1 ∈ m.receiveEvent.covered)
and the send event (l2 ∈ m.sendEvent.covered). As it is possible in UML that
a message is assigned to more than one lifeline, the design rule iterates via an ex-
istential quantifier (∃l1, l2 . . .) over all returned lifelines which are assigned to the
variables l1 and l2. For message ‘connect‘ l1 is instantiated with the lifeline ‘s‘ of
type ‘Streamer‘ and l2 with the lifeline ‘d‘ of type ‘Display‘. Next, the owned at-
tributes (the association ends are expressed as attributes) of the senders lifeline type
(l2.represents.type.ownedAttribute) are compared to those of the receiver (a.type =
l1.represents.type). If one is found then there must be an association that connects
sender type and receiver type. The second part of Design Rule (1) accesses the receiver
lifeline – lifeline ‘s‘ in this example. All types (universal quantifier ∀) of the lifeline
must include an operation that is named after the message name. The ‘s‘ lifeline is
an instance of class ‘Streamer‘ that includes operations (‘ownedOperation‘ property)
such as ‘connect‘ and ‘stream‘. The existential quantifier then validates whether at least
one operation matches the name of the message (=‘connect‘). Thus, both conditions of
Design Rule (1) are satisfied and the condition validates to true (=consistent).

2.3 Problem Description

Current state-of-the-art requires the re-validation of the entire design rule [6] if a model
change affects it. This is computationally increasingly expensive with the complexity
of the design rule or the number of model changes, thus these approaches scale only for
small quantities of model changes (individual changes) and comparative small design
rules. A solution explored in [3] is thus to describe design rules from the perspective of
different model changes. However, this requires manual overhead and introduces errors



if done incorrectly. Another solution would be to split up the design rule into smaller
parts. However, doing so increases the number of design rules but would not cause any
performance and memory advantages. This problem is aggravated by the quantity of
model changes (e. g., as in model re-factoring, branching, merging, repair). To illustrate
this, consider the case of a repair. Our previous work [9] demonstrated that between
ten to twenty kinds of changes can resolve a typical inconsistency. This number seems
small enough. However, for computing the effects of such repairs ([5] referred to them
as side effects), permutations of these ten kinds of choices need to be explored where
each permutations requires (incremental) consistency checking. The number of possible
repair alternatives increases exponentially.

3 Model/Analyzer Approach

This section introduces an approach that improves incremental consistency checking.
Our empirical evaluation shows a reduction up to 20-fold (average 10-fold) in context of
19 design rules we analyzed. Our approach automatically records the run-time behavior
of design rules to reason about which parts of the design rule validation are affected by
a model change. In the following, we demonstrate how to capture the validation of a
design rule in form of a validation tree and how to identify which part of the validation
tree is affected by a model change.

3.1 Principles

Incremental consistency checking builds a scope for each design rule – or in case of
Model/Analyzer for each design rule validation. If a model element changes then all
those design rule validations need re-validation that included the changed element in
their scope. Take, for example, a simple conjunction a ∧ b. In fact, Design Rule (1) is
a conjunction where a checks for the message direction and b checks for the method
declaration. During the initial validation of this conjunction, the consistency checker
will first validate a and if a is true then b will be validated also. If a is false then b

need not be validated because the result does not depend on b. The validation of the
conjunction a ∧ b results in either true (=consistent) or false (=inconsistent).

A model change only then affects the validation result of conjunction a∧ b if either
a or b changes. Clearly, if neither a nor b change then the validation result cannot be
affected. However, not all changes to a or b affect the validation result. For example if
a = true, b = false and a changes then this change does not affect the result of the
conjunction (a∧ b was false because of b and for as long as b remains false a change to
a does not matter). In this case, we may well discard a from the change impact scope
which means that a change to a should not trigger a re-validation of a∧ b (expressed in
Table 1, row 3). We see that initially, both a and b are validated (a = true, b = false)
but a is discarded from the scope (column ‘initial‘). If a changes (column ‘change a‘),
no re-validation is performed. If b changes, however, we need to validate a because it
may have changed since (by having discarded it from the change scope we no longer
know what happened to it since). The scope stays the same unless a is false in which
case b may be discarded (recall from above that b needs no validation if a is false).



Row 4 in Table 1 depicts another situation where a = true and b = true. The
validation result of the conjunction is thus true and it is clear that both a and b may
affect this validation result if either one of them were to change. Thus, both need to be
validated and nothing can be discarded. This is the worst case for a conjunction where
there is no apparent savings in the validation time and scope (memory consumption).
However, even here we find savings in how incremental validation is performed. For
example, if b changes then it must have become false and no validation is necessary
to determine that the validation result of the conjunction is false also, i. e., a need no
re-validation and can be discarded from the scope.

a b a ∧ b
validate/discard

initial change a change b

1 false false false a/− b/a −/−

2 false true false a/− b/− −/−

3 true false false ab/a −/− a/

{

b if a = false
− else

4 true true true ab/− −/b −/a

Table 1. Initial Validation and Re-validation of a Conjunction

To illustrate the benefits, consider the total number of validations and dismissals
in Table 1. We see that the initial validation investigates at least a and often also b (in
average 1.5 validations depending on situation). Here, our approach’s performance is
identical to the traditional Model/Analyzer approach. However, the advantage of our ap-
proach becomes apparent with the changes. Traditional approaches have to pay the ini-
tial validation cost for all subsequent changes. In our approach, we see that for changes
to a only 0-1 (average 0.5) re-validations are necessary (instead of the 1.5). The same
is true for changes to b with an even lower average of 0.25. These saving are small if
we consider expressions individually but these saving accelerate with every expression.
As an example, assume that a in a ∧ b is another conjunction a1 ∧ a2: (a1 ∧ a2) ∧ b.
If a1 changes but a1 was discarded from the scope (Table 1) then no re-validation is
necessary. If a1 was not discarded then it may affect a1 ∧ a2 and we need to re-validate
a1∧a2 to be certain. Only if the re-validation of a1∧a2 shows that it indeed changes and
Table 1 reveals that its change may affect a ∧ b where a = a1 ∧ a2 then we re-validate
a ∧ b (where the validation result for a is already known because it was just validated).
The more complex the design rule, the more significant must be the savings. Consider
that a1 ∧ a2 = true and b = false. In this case, the a branch, consisting of a1 ∧ a2, is
discarded from the scope which means that neither a1 nor a2 can affect the design rule.
Each upward re-validation step is thus a double filter: 1) to assess whether the change
can impact the validation result of the step and 2) only if that validation result changes
then the step above is re-validated.

To achieve these performance gains, our approach must retain some intermediate
validation results from the initial validation or subsequent re-validation in form of a
validation tree (will be discussed below). However, we will demonstrate that this mem-
ory consumption is moderate because significant parts of the validation tree can be
discarded as shown in the small example above.



Naturally, our approach is not just limited to conjunctions. Design Rule (1) consist
of a conjunction but its arguments are more complex expressions such as quantifiers. Ta-
ble 2 shows the validated and discarded parts for the initial validation and re-validation
for possible changes on an existential quantifier. An existential quantifier is similar to
concatenated disjunctions. From this it follows that if the existential quantifier vali-
dates to true then one validation of the source elements must be kept to ensure that
this quantifier can change its state only if at least this validation fails. All others can
be discarded. Other logical expression, such as disjunctions, implications, negation, the
universal quantifier, . . . , are analogous and we omit their discussion due to brevity.

A = {a1, a2} ∃a ∈ A|a
validate/discard

initial add a3 delete a1 delete a2 change a1 change a2

1 {false, false} false Aa1/− Aa3/a1 Aa2/a1 −/− a1/− −/−

2 {false, true} true Aa1a2/a1 −/− −/− Aa1/a2 −/− Aa1/a2

3 {true, false} true Aa1/− −/− Aa2/a1 −/− Aa2/a2 −/−

4 {true, true} true Aa1/− −/− Aa2/a1 −/− Aa2/a1 −/−

Table 2. Initial Validation and Re-validation of an Existential Quantifier

3.2 Filtered Validation Tree

The validation tree is a structured log of the validation of a design rule and depicts every
expression performed, the order they were performed, the model elements that were
accessed, and all intermediate results generated. This validation tree will be generated
the first time a design rule is validated on a model element, i. e., on start-up and when
new model elements that match the context of a design rule are created. Figure 2 shows
a validation tree for the message ‘connect‘. Algorithm 1 describes how the validation
tree is built and how parts of it are discarded to reduce the impact of a model change
(CPU savings) and reduce memory.

At the beginning, the algorithm distinguishes (line 2) between expressions that have
a Boolean result (e. g., conjunction, existential quantifier) and all other expressions
(e. g., model access, string or collection manipulations). If the expression is a Boolean
expression then the first action (3) is to create a node in the validation tree that points
to the expression (ǫ) (e. g., the conjunction for Design Rule (1) becomes the root node
in the tree). The next step is the validation of the arguments (α) of the expression (6)
which is done by a recursive call of the validate algorithm for all its arguments. The
validation is guarded by a condition (5) that the argument needs validation only if the
result is not already in the validation tree. Of course, during the initial validation no re-
sults are in the validation tree; however, we will see later that re-validation makes use of
this algorithm also and the need for this condition will be explained in the next section.
An edge will be added between the node of this expression and the node created during
the validation of each argument (7). The algorithm distinguishes between the different
logical operation types (o). Due to brevity only the conjunction (8) and the existential
quantifier (10) are given (there were discussed above in detail), but the other operations
can be derived from these two operation because of the rules of the Boolean algebra.



Algorithm 1 Initial Validation and Creation of a Validation Tree

1 validate(Expression e)

2 if (e.operation is a boolean operation)

3 add node(reference to e)

4 for (i=1 to #e.arguments) //validate arguments

5 if (e.arguments[i] is not in validation tree)

6 validate(e.arguments[i])

7 add edge(e.node, arguments[i].node)

8 if (e is-a conjunction)

9 if e.arguments[i].result!=false next

10 else if (e is-a existential)

11 if e.arguments[i].result!=true next

12 ...

13 else next

14 e.result = e.operation(e.arguments) //compute validation result

15 if (e is-a conjunction) //filter 1 validation tree (discard)

16 if (e.arguments[1] and !e.arguments[2]) remove edge(e,e.arguments[1])

17 else if (e is-a existential)

18 if (e.result=true)

19 for (i=1 to #e.arguments)

20 if e.arguments[i]=false remove edge(e, e.arguments[i])

21 ...

22 else

23 e.result = e.operation(e.arguments)

24 if (e.operation accesses model elements)

25 add node(reference to model elements)

Not all arguments need to be validated to compute the validation result of the expres-
sion (9, 11 are analogous to Table 1). After the validation has finished, the result is
calculated (14) and the filtering of the validation tree starts (15-21). The filtering of the
validation tree is the dismissal of previously validated nodes/edges (e. g., see Table 1
third row or Table 2 second row). For example, if the expression is a conjunction and
the first argument is true but the second one is false then the edge to the first argument
can be discarded.

As was said, the algorithm distinguishes between Boolean and non Boolean expres-
sions. The non-Boolean expressions are usually model accesses (e. g., retrieve the name
of a message) or manipulations (e. g., remove an association from a collection). Those
expressions are processed in lines 23 to 25. Essentially, our approach keeps track of
all model elements accessed for which we create leaf nodes in the validation tree. The
actual results computed by these expressions are discarded eventually to minimize the
memory overhead of our approach. The leaf nodes typically only contain the references
to the model elements through which the results were computed. In Design Rule (1),
the source of the first existential quantifier is a property call: m.receiveEvent.covered

which includes accesses to two model elements: the ‘receiveEvent‘ of the message ‘m‘
and from its result the ‘covered‘ property. This sequence of two property calls reveals
the lifelines that act as message receivers. The leaf node will identify these accessed
model elements and properties. If one of them should change then the existential quan-
tifier would be (potentially) affected and may require re-validation. In our example the
existential quantifier that iterates over all the operations of class ‘Streamer‘ creates one
node and edge to the model element properties that are accessed to get the operations.
For each operation in the source a sub tree representing the condition of the quantifier



is created. After the sub trees are created, all the sub trees that are not needed for the
validation result of the existential quantifier are discarded (refer to Table 2).

Validation of Message m ‘connect‘

∧

∃
l1 ∈ m.receiveEvent.covered

l2 ∈ m.sendEvent.covered

∃a ∈ l2.represents.type.ownedAttribute

⇒

6=

a[attr] null

=

a[attr].[Streamer] l1[s].represents.[Streamer]

∀ l ∈ m.rec . . .

∃ o ∈ l.rep . . .

=
discarded

o[stream] m[connect]

=

o[connect] m[connect]

Fig. 2. Validation Tree for Message ‘connect‘

Since the validation of a design rule discards parts of the validation tree, we speak
of a filtered validation tree. The filtered validation tree contains only nodes representing
the Boolean expressions with their Boolean validation results. Both are cheap to main-
tain in terms of memory consumption. All other validation results are discarded after the
validation except for the model element/properties that were accessed to compute the
results. These model accesses are references to the design model and such references
are also cheap to maintain in terms of memory consumption.

3.3 Impact of a Change

Once a validation tree has been created, only those parts must be re-validated that are
affected by the change. The initial generation of a validation tree is strictly top down
whereas the incremental re-validation is mostly bottom up. The previous section dis-
cussed one part of the benefits of our approach in that the re-validation focuses on the
filtered validation tree only and ignores changes that would have affected discarded
parts of the validation tree. This saves both memory and improves performance be-
cause a change becomes less likely to affect the validation tree. This section discusses
another part of the benefits of our approach. It demonstrates that changes propagate up-
ward for as long as the nodes are affected by the change only. Since the validation tree
stores all intermediate Boolean results, only changes to these results must be computed
anew. The model elements accessed (scopes) are referenced at the bottom of the tree
(the leaves) and the impact of model element changes thus always start at the leaves
and is propagated upward towards the root.

We illustrate this on two change examples and the validation tree for message ‘con-
nect‘. The first change (change 1) is the renaming of the operation ‘connect‘ to ‘wait‘ in



Validation of Message m ‘connect‘

∧

true
1
→ false

∃

discarded due to 1
l1 ∈ m.rec . . .

l2 ∈ m.sen . . .

∃a ∈ l2.rep . . .

⇒

6=

a[attr] null

=

a[attr].[Streamer] l1[s].represents.[Streamer]

∀

true
1
→ false

l ∈ m.rec . . .

∃

true
1
→ false

o ∈ l.rep . . .

=

re-validated due to 1

false
2
→ false

o[stream
2
→ play] m[connect]

=

true
1
→ false

o[connect
1
→ wait] m[connect]

Fig. 3. Impacts of two Changes on the Validation Tree

Figure 1. The second change (change 2) is the renaming of operation ‘stream‘ to ‘play‘.
Their impacts on the validation tree are shown in Figure 3. Change 1 is drawn in a thick
solid black line and change 2 as a thick dashed line. Algorithm 2 shows the handling of
a change in pseudo code.

Change 1 affects the operation ‘connect‘ (o[connect
1
→ wait]) which is now named

‘wait‘ (represented by the arrow with the number of the change on top of it from

connect
1
→ wait). Algorithm 2 first identifies all the leaf nodes that reference the

changed model element. The re-validation is bottom up and starts at these leaf nodes
(27, 28). For each leaf node, the re-validation saves the previous, old result (31) and
re-validates the expression (32). Since the approach maintains the Boolean results in a
validation tree only, it follows that no results are saved for leaf nodes and the ‘oldValue‘
remains undefined. Leaf nodes are thus always re-validated and their results propagated
upwards (33) to the parent node (35). In our example, the new name of the operation
is retrieved and then propagated up to the equals expression in Figure 3. The equals
expression must be re-validated using the new value from the left branch and either
the old value from the right branch (if the validation tree has the value) or a computed
value otherwise (note lines 5-6 in Algorithm 1). In our example, the result of the equals
expression changes from true to false and as the value changed, the new value will be
propagated up to the existential quantifier, the parent of the equals expression. As this
was the only node that made the existential quantifier true, its change causes the re-
validation of other branches. Recall that during the creation of the validation tree the
branch for operation ‘stream‘ was discarded because it did not affect the validation re-
sult of the existential quantifier. This branch may have changed since and needs to be
re-validated. If there are no other elements or none of the other elements satisfy the
existential quantifier (as in our example), the result changes and the new result is prop-
agated up to the universal quantifier. This universal quantifier fails also because of the
fail to the existential quantifier and the new value is propagated to the conjunction, the
top node of the validation tree (it has no parent, line 34). This node will validate to false
also, the overall evaluation of this design rule changes from consistent to inconsistent.



Algorithm 2 Processing a Model Change

26 processChange(Element elem)

27 for all (node:validation trees | node references elem)

28 revalidate(node.expression)

29
30 revalidate(Expression e)

31 oldResult = e.result // is empty if leaf

32 e.result = validate(e)

33 if (oldResult != e.result) // filter 2 stop bottom up propagation

34 if (e has parent node)

35 revalidate(e.parent)

As can be seen 11 out of 22 nodes (a complete re-validation) must be re-validated due
to this change only. Furthermore, the left part of the validation tree (the first argument
of the conjunction) will be discarded thereafter because it cannot influence the valida-
tion result after the change, cutting 11 nodes from the 22 nodes. This benefits the next
re-validation because a change becomes less likely to affect the new filtered validation
tree.

The second change affects operation ‘connect‘ (o[stream
2
→ play]). Without the

first change this change would not have affected the validation tree because this branch
was discarded during the initial validation and only added again after the first change.
The operation ‘connect‘ is thus in the change scope now. However, the re-validation of
the second change stops at the equals relation because the result of this node does not
change (33), i. e., it remains false. The upward propagation of changes thus stops once
the re-validated result of a node is equal the previously known result (‘oldResult‘) of
that node. In this case 3 out of the 11 remaining nodes must be re-validated only.

In contrast to other approaches, where the change of one model element triggers
a re-validation of the design rule in its entirety, our approach only triggers the re-
validation of those nodes in the validation tree that are affected by a model change.
Since a discarded argument in an expression discards the entire branch, the reductions
increase with the complexity of the design rule (the number of nodes). For the non-
discarded arguments, it must be noted that the re-validation is mostly upwards from
leaf to root nodes and new validations (top down) are limited to sub trees only. If mul-
tiple model elements change then the same validation tree may have to be validated
multiple times, but these re-validations always start at distinct parts of the tree and may
only join at common roots (and only if the change affects the parent expressions). Re-
dundancies are possible only if the changes trickle to common roots which is often not
the case. Further optimizations are possible here.

4 Evaluation

We empirically validated our approach on 30 industrial UML models ranging from
small to large models (127 to 67,723 model element/properties). These models were
evaluated on 19 design rules. The design models are in part taken from [6] and were
transformed from UML 1.4 to UML 2.1 (this explains the differences in model sizes).
The design rules were also taken from [6] and converted form Java to OCL design rules
(some of them could not be converted due to the limited expressiveness of OCL). The



Name #Model

Elements

#Scope

Elements

#Design Rule

Validations

MOH Brute f.

[MB]

MOH Filtered

[MB]

MOH MDT

OCL [MB]

Video on Demand 90 127 63 2 2 1

ATM 220 763 304 20 10 7

Microwave Oven 290 296 138 29 13 9

Model View Controller 418 834 393 16 12 7

eBullition 513 892 341 53 18 10

Curriculum 763 1,350 595 150 43 4

Teleoperated Robot 1,115 1,969 885 97 34 5

Dice 3 1,274 1,649 599 74 14 3

ANTS Visualizer 1,282 3,119 1,225 169 93 6

Inventory and Sales 1,296 1,898 803 250 17 4

Course Registration 1,406 1,822 712 97 19 4

UML IOC F05a T12 1,453 2,441 998 67 23 6

VOD 3 1,558 4,652 1,789 175 110 7

Vacation and Sick Leave 1,658 2,681 1,084 145 65 5

Home Appliance 1,707 2,115 784 267 53 6

HDCP Defect Seeding 1,784 2,199 985 72 36 7

DESI 2.3 1,974 4,727 1,838 188 106 7

iTalks 2,212 4,049 2,289 417 130 6

Hotel Management Sys. 2,583 4,244 2,033 359 87 5

Biter Robocup 2,632 6,265 2,334 227 129 8

Calendarium 2,809 6,160 2,694 326 79 6

UML LCA F03a T1 2,983 2,912 1,243 108 53 3

<unnamed> 5,373 6,804 2,906 973 129 7

NPI 7,110 8,536 2,930 1,353 97 7

Word Pad 8,078 17,907 8,186 860 513 20

dSpace 3.2 8,761 12,994 5,869 N.A. 259 11

OODT 9,828 26,650 11,384 752 434 21

Insurance Network Fees 16,255 27,442 10,562 N.A. 172 58

<unnamed> 33,347 33,844 16,627 N.A. 382 111

<unnamed> 64,061 67,723 40,297 N.A. 724 61

Table 3. Model Size, Design Rule Validations and Memory Overhead

complete list of design rules and the Model/Analyzer tool can be found on our tools
homepage http://www.sea.jku.at/tools/.

Before we evaluate the performance of the new approach we have to ensure that
the validation of the design rules are correct. To validate this, we compared the results
with the standard MDT (Modeling Development Tools of Eclipse) implementation of
OCL. Given the large number models and over 90,000 correct design rule validations,
the approach can be considered correct.

The evaluation of our approach covers the memory overhead and the performance.
The evaluations were done using our implementation for the IBM Rational Software
Architect (RSA) on an Intel Core 2 Quad CPU @2.83GHz with 8GB (4GB available
for the RSA) RAM and 64bit Linux (3.1.9). We compare our evaluation results against
incremental approaches exclusively and do not address the improvements against batch
evaluation which is already done in our former work [6]. We evaluated the memory



overhead based on three criteria: 1) the memory used by a Brute force validation, i. e.,
each intermediate validation result as well as the property calls are cached, 2) the mem-
ory overhead of the filtered validation tree, and 3) the memory overhead of the MDT
OCL validation which caches the scope only. For larger models the Brute force vali-
dation could not be completed due to out-of-memory exceptions (N.A.). The memory
consumption was measured using the ‘Runtime‘ interface of Java and before measuring
the garbage collector was activated. The measured data were double checked with data
from the TPTP profiler for eclipse.

10−3

10−2

10−1

100

101

101 102 103 104 105

Model Size [#Elements]

[m
s]a)

×

×

××
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

× ×

×

Filtered
+

+

+

+

++

+
++

+

+++

+

+
++

+

++

+

+
+

+
+

++

+

+ +

+
MDT OCL

10−3

10−2

10−1

100

101

100 101 102 103 104

Design Rule Size [#Nodes]

[m
s]b)

×

× ×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

Filtered
+

++

+
+

+ +

+

+

+

+
++

+

+
+

+
+

+

MDT OCL

DR01

DR02

DR03
DR04

DR05
DR06

DR07

DR08

DR09

DR10

DR11

DR12

DR13

DR14

DR15

DR17

DR18

DR19

Fig. 4. Evaluation Time (in ms) of MDT OCL and the Optimized Approach

Table 3 shows the evaluation results for the memory overhead (MOH in Mega Byte)
in relationship to the model sizes, the accessed model element properties, and the quan-
tities of validated design rules. Compared to the worst case (Brute force), the reduction
of the used memory (Filtered) is between 50% and 80% (except for the very small mod-
els). As can be seen, the reduction depends not only on the model size but also on the
number of validated design rules and accessed model elements. The main memory over-
head (MDT OCL) is caused by the scope that must be built, even for other incremental
consistency checking approaches that are scope based.

The evaluation of the performance is done in the same environment using ‘Sys-
tem.nanoTime()‘ (resolution 1µs). We compared the evaluation of the validation us-
ing the MDT OCL environment with the validation of the filtered validation tree. Fig-
ure 4 shows the timing results regarding the model size (a-left) and regarding the de-
sign rule complexity (b-right). We measured the average re-validation of 50 random
model changes on each model. The model changes cover the modification of model
element properties, the addition of model elements and their deletion. As can be seen,
the re-validation times (measured in ms) are nearly independent of the model size, but
the state-of-the-art OCL validation times are about 2 to 20-fold slower than compared
to our new approach. Slightly different are the results for the design rule complexity.
Whereas the re-validation time remains stable for our new approach, the re-validation
using the MDT OCL increases linear with the design rule complexity (please note the
logarithmic scale on both axes for both diagrams).

It is intuitive to believe that our approach should perform better for larger, more
elaborate rules because our approach does not require the re-validation of the entire



rule (=equivalent to the entire validation tree) but only some paths from the leaves to
the root. If a validation tree has m nodes (=expressions) then the run-time complexity of
the normal approach should be O(m) whereas the run-time complexity of the optimized
approach should be O(log(m)). Figure 4 (b) confirms this hypothesis for all rules. The
larger the rules (x-axis, measured in the average sizes of their evaluation trees), the more
significant the saving.

5 Threats to Validity

The threats to validity are mostly centered on the random testing of changes. Random
changes can lead to models that may not be valid and do not conform to the UML stan-
dard. Still, they are possible changes and it may be useful to know that our approach
is superiors, perhaps even with changes that are impossible. Another aspect has to do
with the fact that random changes may under represent expensive changes. This as-
sumes that there are changes that are likely and expensive. However, previous work has
shown that likely changes are rarely expensive changes [8]. The reason we relied on
random changes was simply our desire to perform large quantities of model changes.
Second, the validation time for the state-of-the-art MDT OCL validations is measured
without the generation of the scope because to do so the UML implementation must be
instrumented (as on the case of our former work). Using the new approach this is not
necessary any more. However, this implies that the results of our approach should be
even better because computing the scope would have been higher, as would have been
the memory cost.

6 Related Work

Cabot and Teniente present an event triggered approach to detect inconsistencies in
UML/OCL conceptual schema [4]. They use a list of events that trigger the re-evaluation
of consistency rule. An event is a modification in the model and using this events they
reduce the amount of rules that must be re-validated in the model. They also use a syn-
tax tree that is annotated with events that potentially violate the constraint expressed in
OCL. In contrast to our approach the use a static analysis of the OCL constraint and as
such the incremental characteristic is limit to single constraints only.

Jouault et al. [12] developed an incremental approach using ATL (AtlanMod Trans-
formation Language) to transform OCL rules and to trigger only those rules that are
affected by a model change. This approach similar to ours as it uses model element and
their properties to trigger the re-evaluation of constraints. But their main focus is on a
static analysis of the constraints where the trigger events are extracted whereas we are
able to consider parts of a constraint only. Unfortunately, they provide no evaluation of
their approach regarding the evaluation time and memory consumption.

Similar, Blanc et al. [3] achieve near instant performance thanks the re-writing of
design rules for each relevant model change. This requires the engineer to re-factor con-
sistency rules to understand the impact of model changes. If done correctly, this leads
to good performance. However, since writing these annotations may cause errors, they
are no longer able to guarantee the correctness of incremental consistency checking.



Bergmann et al. [2] present an query based approach. This approach is similar to
the approach presented in this paper, but they use a query language (IncQuery) that is
executed on EMF models. Their approach is based on the Viatra2 [20] framework and
in RETE [11] networks. In their approach the queries must be stored permanently in
memory and the values must be updated after each model change. In contrast, in our
approach we only store references on the model elements and the Boolean values of
the validation tree, which shortens the massive memory consumption problem. Unfor-
tunately, the smallest unit in their timings are 10ms which is rather high for the problem
addressed in our paper.

Nentwich et al. present xLinkIt [14], a language that evaluates the consistency of
“documents”, including UML design models. Design rules are expressed in a uniform
manner and xLinkIt is capable of checking the consistency of models incrementally.
However, it requires between 5 and 24 seconds for evaluating changes and the tool is
thus not able to keep up with an engineer’s rate of model changes. The approach by
Reiss [16] is in principle alike xLinkIt. Rather than defining consistency rules on XML
documents, Reiss defines consistency rules as SQL queries which are then evaluated on
a database which may hold a diverse set of artifacts. Reiss’ use of a database makes
his approach certainly more incremental. However, the incremental updates in his study
take about 30 seconds to 3 minutes. ArgoUML [17] was probably the first UML design
tool to implement incremental design checking but it required annotated consistency
rules. Their annotations were lightweight but so where their computational benefits.

In the context of pervasive computing Xu et al. optimized the re-validation of design
rules [21]. The also use validation trees to for their optimization but in contrast to our
approach they process modifications of the context (the location) only. However, as we
address model-based software development we have to deal with more types of changes.
Furthermore, we optimize the tree in the post process to achieve better results regarding
reduced memory consumption and re-validation effort.

7 Conclusions and Future Work

This work introduced a novel approach to the incremental validation of design rules
in design models. Empirical validation on 19 design rule has shown that our approach
reduces the time to re-validate a design rule up to 95%. This observation was made on
a large number of design models and we found that it outperformed the state of the art
under all situations by a large margin. Indeed, we have not encountered a single design
rule that would not benefit from our approach. This work paves the way for processing
a much larger number of model changes and/or more complex model changes with
instant or near instant response times. In our future work, we will use this re-validation
approach to simulate repair actions and determine the effects that such actions have on
the overall design model and on other design rules.

Acknowledgments

This research was funded by the Austrian Science Fund (FWF): P21321-N15



References

1. R. Balzer. Tolerating Inconsistency. In L. Belady, D. R. Barstow, and K. Torii, editors, ICSE,
pages 158–165. IEEE Computer Society / ACM Press, 1991.

2. G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and A. Ökrös. Incremen-
tal evaluation of model queries over EMF models. In Proceedings of the 13th international

conference on Model driven engineering languages and systems: Part I, MODELS’10, pages
76–90, Berlin, Heidelberg, 2010. Springer-Verlag.

3. X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detecting model inconsistency through
operation-based model construction. In W. Schäfer, M. B. Dwyer, and V. Gruhn, editors,
ICSE, pages 511–520. ACM, 2008.

4. J. Cabot and E. Teniente. Incremental integrity checking of UML/OCL conceptual schemas.
Journal of Systems and Software, 82(9):1459–1478, 2009.

5. B. Demsky and M. Rinard. Data structure repair using goal-directed reasoning. In Proceed-

ings of the 27th international conference on Software engineering, ICSE ’05, pages 176–185,
New York, NY, USA, 2005. ACM.

6. A. Egyed. Instant consistency checking for the UML. In Proceedings of the 28th interna-

tional conference on Software engineering, ICSE ’06, pages 381–390, New York, NY, USA,
2006. ACM.

7. A. Egyed. Fixing Inconsistencies in UML Design Models. In ICSE, pages 292–301. IEEE
Computer Society, 2007.

8. A. Egyed. Automatically Detecting and Tracking Inconsistencies in Software Design Mod-
els. IEEE Trans. Software Eng., 37(2):188–204, 2011.

9. A. Egyed, E. Letier, and A. Finkelstein. Generating and Evaluating Choices for Fixing Incon-
sistencies in UML Design Models. In Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, ASE ’08, pages 99–108, Washington, DC,
USA, 2008. IEEE Computer Society.

10. S. Fickas, M. Feather, and J. Kramer. Proceedings of ICSE-97 Workshop on Living with
Inconsistency. 1997.

11. C. Forgy. Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match Prob-
lem. Artificial Intelligence, 19:17–37, 1982.

12. F. Jouault and M. Tisi. Towards Incremental Execution of ATL Transformations. In L. Tratt
and M. Gogolla, editors, ICMT, volume 6142 of Lecture Notes in Computer Science, pages
123–137. Springer, 2010.

13. M. Mens, S. Ragnhild, and M. D’Hondt. Detecting and Resolving Model Inconsistencies
Using Transformation Dependency Analysis. In The 9th Int’l Conf. MoDELS 2006, pages
200–214. Springer-Verlag, 2006.

14. C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a consistency checking
and smart link generation service. ACM Trans. Internet Technol., 2(2):151–185, May 2002.

15. C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency management with repair ac-
tions. In Proceedings of the 25th International Conference on Software Engineering, ICSE
’03, pages 455–464, Washington, DC, USA, 2003. IEEE Computer Society.

16. S. P. Reiss. Incremental Maintenance of Software Artifacts. IEEE Trans. Software Eng.,
32(9):682–697, 2006.

17. J. E. Robbins. ArgoUML, v0.32.1. http://argouml.tigris.org/, March 2011.
18. M. Sabetzadeh, S. Nejati, S. Liaskos, S. M. Easterbrook, and M. Chechik. Consistency

Checking of Conceptual Models via Model Merging. In RE, pages 221–230. IEEE, 2007.
19. R. Van Der Straeten and M. D’Hondt. Model refactorings through rule-based inconsistency

resolution. In Proceedings of the 2006 ACM symposium on Applied computing, SAC ’06,
pages 1210–1217, New York, NY, USA, 2006. ACM.



20. D. Varró and A. Balogh. The model transformation language of the VIATRA2 framework.
Sci. Comput. Program., 68(3):214–234, 2007.

21. C. Xu, S. C. Cheung, and W. K. Chan. Incremental consistency checking for pervasive
context. In Proceedings of the 28th international conference on Software engineering, ICSE
’06, pages 292–301, New York, NY, USA, 2006. ACM.


	Incremental Consistency Checking for Complex Design Rules and Larger Model Changes

